Search results

1 – 4 of 4
Article
Publication date: 21 May 2024

Gan Zhan, Zhihua Chen, Zhenyu Zhang, Jigang Zhan, Wentao Yu and Jiehao Li

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking…

Abstract

Purpose

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking control architecture that integrates perception, planning, and motion control.

Design/methodology/approach

Firstly, the proposed dynamic docking control architecture uses laser sensors and a charge-coupled device camera to perceive the pose of the target. The sensor data are mapped to a high-dimensional potential field space and fused to reduce interference caused by detection noise. Next, a new potential function based on multi-dimensional space is developed for docking path planning, which enables the docking mechanism based on Stewart platform to rapidly converge to the target axis of the locking mechanism, which improves the adaptability and terminal docking accuracy of the docking state. Finally, to achieve precise tracking and flexible docking in the final stage, the system combines a self-impedance controller and an impedance control algorithm based on the planned trajectory.

Findings

Extensive simulations and experiments have been conducted to validate the effectiveness of the dynamic docking system and its control architecture. The results indicate that even if the target moves randomly, the system can successfully achieve accurate, stable and flexible dynamic docking.

Originality/value

This research can provide technical guidance and reference for docking task of unmanned vehicles under the ground conditions. It can also provide ideas for space docking missions, such as space simulator docking.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 June 2024

Mingze Jiang, Minghui Jiang, Jiaxin Xue, Wentao Zhan and Yuntao Liu

In the construction of charging piles, traditional gas stations possess significant advantages in terms of regional and financial resources. The transformation of gas stations…

Abstract

Purpose

In the construction of charging piles, traditional gas stations possess significant advantages in terms of regional and financial resources. The transformation of gas stations into “refueling+charging” integrated gas stations relies on charging pile manufacturers and government, involving coordination issues with them. This paper aims to propose a joint coordination contract based on the principles of cost-sharing and revenue-sharing. The objective is to achieve systemic coordination among integrated gas stations, charging pile manufacturers, and the government, optimizing the planning of the quantity of charging piles and charging prices.

Design/methodology/approach

We have constructed an operational system model based on the Stackelberg game between charging pile manufacturers, integrated gas stations, and government. We have analyzed the optimal quantity of charging piles and charging prices under the impact of government subsidy policies in both decentralized and centralized operation scenarios. Additionally, we have proposed a joint coordination contract based on cost-sharing and revenue-sharing to coordinate this tripartite operational system.

Findings

The study reveals that, under simple cooperative contracts, the optimal decision does not yield maximum profits for the operational system due to the “double-marginal effect”. However, under the impact of the joint coordination contract, which combines cost-sharing and revenue-sharing as proposed in this paper, gas stations will consider the charging pile manufacturer’s costs and government subsidies when determining the optimal quantity and price. This not only achieves system coordination but also results in Pareto improvement in the benefits of all system members by adjusting contract parameters.

Originality/value

The value of this research lies in its insights into operational strategies for the construction of charging piles for electric vehicles. By analyzing optimal decisions under different contract arrangements, the study provides guidance to relevant stakeholders, enabling the operational system to achieve greater efficiency and coordination and realize more extensive Pareto improvements. Furthermore, it extends the application of coordination contract theory in the context of charging pile construction and operations.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 2 March 2023

Wentao Zhan, Minghui Jiang and Xueping Wang

Omnichannel sales have provided new impetus for the development of catering merchants. The authors thus focus on how catering merchants should manage capacities at the ordering…

Abstract

Purpose

Omnichannel sales have provided new impetus for the development of catering merchants. The authors thus focus on how catering merchants should manage capacities at the ordering, production and delivery stages to meet customers’ needs in different channels under third-party platform delivery and merchant self-delivery. This is of great significance for the development of the omnichannel catering industry.

Design/methodology/approach

This paper formulates the capacity decisions of omnichannel catering merchants under the third-party platform delivery and merchant self-delivery mode. The authors mainly use queuing theory to analyze the queuing behavior of online and offline customers, and the impact of waiting time on customer shopping behavior. In addition, the authors also characterize the merchant’s capacity by the rate in queuing model.

Findings

The authors find that capacities at ordering stage and food production stage are composed of base capacities and safety capacities, but the delivery capacities only have the latter. And in the self-delivery mode, merchants can develop higher safety capacities by charging delivery fees. The authors prove that regardless of the delivery mode, omnichannel sales can bring higher profits to merchants by integrating demand.

Originality/value

The authors focus on analyzing the capacity management of omnichannel catering merchants at the ordering, production and delivery stages. And the authors also add the delivery process into the omnichannel for analysis, so as to solve the problem of capacity decision-making under different delivery modes. The management of delivery capacity and its impact on other stages’ capacities are not covered in other literature studies, which is one of the main innovations of this paper.

Details

Kybernetes, vol. 53 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 12 April 2024

Xiaodong Yu, Guangqiang Shi, Hui Jiang, Ruichun Dai, Wentao Jia, Xinyi Yang and Weicheng Gao

This paper aims to study the influence of cylindrical texture parameters on the lubrication performance of static and dynamic pressure thrust bearings (hereinafter referred to as…

Abstract

Purpose

This paper aims to study the influence of cylindrical texture parameters on the lubrication performance of static and dynamic pressure thrust bearings (hereinafter referred to as thrust bearings) and to optimize their lubrication performance using multiobjective optimization.

Design/methodology/approach

The influence of texture parameters on the lubrication performance of thrust bearings was studied based on the modified Reynolds equation. The objective functions are predicted through the BP neural network, and the texture parameters were optimized using the improved multiobjective ant lion algorithm (MOALA).

Findings

Compared with smooth surface, the introduction of texture can improve the lubrication properties. Under the optimization of the improved algorithm, when the texture diameter, depth, spacing and number are approximately 0.2 mm, 0.5 mm, 5 mm and 34, respectively, the loading capacity is increased by around 27.7% and the temperature is reduced by around 1.55°C.

Originality/value

This paper studies the effect of texture parameters on the lubrication properties of thrust bearings based on the modified Reynolds equation and performs multiobjective optimization through an improved MOALA.

Details

Industrial Lubrication and Tribology, vol. 76 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 4 of 4