Search results

1 – 4 of 4
Article
Publication date: 6 June 2024

Mingze Jiang, Minghui Jiang, Jiaxin Xue, Wentao Zhan and Yuntao Liu

In the construction of charging piles, traditional gas stations possess significant advantages in terms of regional and financial resources. The transformation of gas stations…

Abstract

Purpose

In the construction of charging piles, traditional gas stations possess significant advantages in terms of regional and financial resources. The transformation of gas stations into “refueling+charging” integrated gas stations relies on charging pile manufacturers and government, involving coordination issues with them. This paper aims to propose a joint coordination contract based on the principles of cost-sharing and revenue-sharing. The objective is to achieve systemic coordination among integrated gas stations, charging pile manufacturers, and the government, optimizing the planning of the quantity of charging piles and charging prices.

Design/methodology/approach

We have constructed an operational system model based on the Stackelberg game between charging pile manufacturers, integrated gas stations, and government. We have analyzed the optimal quantity of charging piles and charging prices under the impact of government subsidy policies in both decentralized and centralized operation scenarios. Additionally, we have proposed a joint coordination contract based on cost-sharing and revenue-sharing to coordinate this tripartite operational system.

Findings

The study reveals that, under simple cooperative contracts, the optimal decision does not yield maximum profits for the operational system due to the “double-marginal effect”. However, under the impact of the joint coordination contract, which combines cost-sharing and revenue-sharing as proposed in this paper, gas stations will consider the charging pile manufacturer’s costs and government subsidies when determining the optimal quantity and price. This not only achieves system coordination but also results in Pareto improvement in the benefits of all system members by adjusting contract parameters.

Originality/value

The value of this research lies in its insights into operational strategies for the construction of charging piles for electric vehicles. By analyzing optimal decisions under different contract arrangements, the study provides guidance to relevant stakeholders, enabling the operational system to achieve greater efficiency and coordination and realize more extensive Pareto improvements. Furthermore, it extends the application of coordination contract theory in the context of charging pile construction and operations.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 20 December 2021

Mingze Wu, Yueji Zhu and Qi Yang

Farmers' adaptation strategies in agricultural production are required to minimise the negative impact of climate change on a nation's food production in developing countries…

1585

Abstract

Purpose

Farmers' adaptation strategies in agricultural production are required to minimise the negative impact of climate change on a nation's food production in developing countries. Based on the panel data of the provincial level in China from 2000 to 2017, this study aims to analyse the changing climate over recent years and farmers' adaptation strategy in terms of cropping in agricultural production.

Design/methodology/approach

This study uses Simpson's diversity index (SDI) to measure the degree of crop diversity planted by farmers and evaluate the influence of climate change on farmers' cropping strategy using the fixed-effect model. Further, the authors estimate the impact of farmers' cropping strategy on their economic performances in two aspects including yields and technical efficiency of crops.

Findings

The empirical results show that the overall climate appears a warming trend. Different from farmers in some other countries, Chinese farmers tend to adopt a more specialised cropping strategy which can significantly improve the technical efficiency and yields of crops in agriculture. In addition, as a moderating role, the specialised cropping can help farmers to alleviate the negative impact of climate change on technical efficiency of their crops.

Originality/value

First, previous studies showed that the changing climate influenced farmers' adaptation strategies, while most studies focussed on multiple adaptation strategies from the farm-level perspective rather than cropping strategy from the nation-level perspective. Second, the present study investigates how the cropping strategy affects the economic performance (in terms of the technical efficiency and crop yields) of agricultural production. Third, the stochastic frontier analysis method is used to estimate the technical efficiency. Fourth, this study explores the moderating effect between farmers' cropping strategy and technical efficiency by introducing an interaction item of SDI and accumulated temperature.

Details

International Journal of Climate Change Strategies and Management, vol. 14 no. 1
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 6 May 2024

Mingze Wang, Yuhe Yang and Yuliang Bai

This paper aims to present a novel adaptive sliding mode control (ASMC) method based on the predefined performance barrier function for reusable launch vehicle under attitude…

Abstract

Purpose

This paper aims to present a novel adaptive sliding mode control (ASMC) method based on the predefined performance barrier function for reusable launch vehicle under attitude constraints and mismatched disturbances.

Design/methodology/approach

A novel ASMC based on barrier function is adopted to deal with matched and mismatched disturbances. The upper bounds of the disturbances are not required to be known in advance. Meanwhile, a predefined performance function (PPF) with prescribed convergence time is used to adjust the boundary of the barrier function. The transient performance, including the overshoot, convergence rate and settling time, as well as the steady-state performance of the attitude tracking error are retained in the predetermined region under the barrier function and PPF. The stability of the proposed control method is analyzed via Lyapunov method.

Findings

In contrast to conventional adaptive back-stepping methods, the proposed method is comparatively simple and effective which does not need to disassemble the control system into multiple first-order systems. The proposed barrier function based on PPF can adjust not only the switching gain in an adaptive way but also the convergence time and steady-state error. And the efficiency of the proposed method is illustrated by conducting numerical simulations.

Originality/value

A novel barrier function based ASMC method is proposed to fit in the amplitude of the mismatched and matched disturbances. The transient and steady-state performance of attitude tracking error can be selected as prior control parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 October 2018

Qifeng Yang, Daokui Qu, Fang Xu, Fengshan Zou, Guojian He and Mingze Sun

This paper aims to propose a series of approaches to solve the problem of the mobile robot motion control and autonomous navigation in large-scale outdoor GPS-denied environments.

Abstract

Purpose

This paper aims to propose a series of approaches to solve the problem of the mobile robot motion control and autonomous navigation in large-scale outdoor GPS-denied environments.

Design/methodology/approach

Based on the model of mobile robot with two driving wheels, a controller is designed and tested in obstacle-cluttered scenes in this paper. By using the priori “topology-geometry” map constructed based on the odometer data and the online matching algorithm of 3D-laser scanning points, a novel approach of outdoor localization with 3D-laser scanner is proposed to solve the problem of poor localization accuracy in GPS-denied environments. A path planning strategy based on geometric feature analysis and priority evaluation algorithm is also adopted to ensure the safety and reliability of mobile robot’s autonomous navigation and control.

Findings

A series of experiments are conducted with a self-designed mobile robot platform in large-scale outdoor environments, and the experimental results show the validity and effectiveness of the proposed approach.

Originality/value

The problem of motion control for a differential drive mobile robot is investigated in this paper first. At the same time, a novel approach of outdoor localization with 3D-laser scanner is proposed to solve the problem of poor localization accuracy in GPS-denied environments. A path planning strategy based on geometric feature analysis and priority evaluation algorithm is also adopted to ensure the safety and reliability of mobile robot’s autonomous navigation and control.

Details

Assembly Automation, vol. 39 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 4 of 4