Search results

1 – 4 of 4
Open Access
Article
Publication date: 12 July 2022

Zheng Xu, Yihai Fang, Nan Zheng and Hai L. Vu

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

1070

Abstract

Purpose

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

Design/methodology/approach

The simulation environment is established by integrating virtual reality interface with a micro-simulation model. In the simulation, the vehicle autonomy is developed by a framework that integrates artificial neural networks and genetic algorithms. Human-subject experiments are carried, and participants are asked to virtually sit in the developed autonomous vehicle (AV) that allows for both human driving and autopilot functions within a mixed traffic environment.

Findings

Not surprisingly, the inconsistency is identified between two driving modes, in which the AV’s driving maneuver causes the cognitive bias and makes participants feel unsafe. Even though only a shallow portion of the cases that the AV ended up with an accident during the testing stage, participants still frequently intervened during the AV operation. On a similar note, even though the statistical results reflect that the AV drives under perceived high-risk conditions, rarely an actual crash can happen. This suggests that the classic safety surrogate measurement, e.g. time-to-collision, may require adjustment for the mixed traffic flow.

Research limitations/implications

Understanding the behavior of AVs and the behavioral difference between AVs and human drivers are important, where the developed platform is only the first effort to identify the critical scenarios where the AVs might fail to react.

Practical implications

This paper attempts to fill the existing research gap in preparing close-to-reality tools for AV experience and further understanding human behavior during high-level autonomous driving.

Social implications

This work aims to systematically analyze the inconsistency in driving patterns between manual and autopilot modes in various driving scenarios (i.e. multiple scenes and various traffic conditions) to facilitate user acceptance of AV technology.

Originality/value

A close-to-reality tool for AV experience and AV-related behavioral study. A systematic analysis in relation to the inconsistency in driving patterns between manual and autonomous driving. A foundation for identifying the critical scenarios where the AVs might fail to react.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 27 February 2024

Laura Gutierrez-Bucheli, Jian Tsen Goh, Ali Rashidi, Duncan Maxwell, Ross Digby, Yihai Fang, Henry Pook and Mehrdad Arashpour

In the realm of construction education, the investigation of immersive learning and extended reality (XR) technologies has experienced a surge in recent times. Nevertheless, there…

Abstract

Purpose

In the realm of construction education, the investigation of immersive learning and extended reality (XR) technologies has experienced a surge in recent times. Nevertheless, there remains a notable lack of comprehension surrounding the most efficient ways to integrate these technologies into tailored teaching approaches for vocational construction training. This research study aims to pinpoint the key factors that construction vocational education and training (VET) providers must consider when introducing XR technologies into their training schemes.

Design/methodology/approach

This study conducted an in-depth literature review to develop an initial framework to summarise training, technology and institutional factors influencing the educational-technology integration of XR technologies in VET. In addition, this study utilised a Delphi technique, including semi-structured group discussions and two rounds of online follow-up questionnaires, to capture VET experts’ judgements on the importance of decision-making criteria.

Findings

This study has identified the critical factors to be considered in the VET sector when adopting XR technologies. Findings revealed institutional factors were the most important criteria for participants, followed by training and technology factors.

Research limitations/implications

The current decision-making process focuses on selecting XR technologies rather than evaluating their performance after implementation. Therefore, more research is needed to monitor the implementation of this technology in curricula from a senior management perspective. This will help to understand the cost and value factors related to the value proposition of XR technologies in courses.

Practical implications

To ensure the success and long-term viability of the technology-curriculum interface, it is important to consider factors such as the availability of technical and educational support, data security and cost-effectiveness. It is also crucial to focus on ease of use and content development that emphasises instruction to create engaging content for learners.

Originality/value

The potential impact of this study is underpinned by two facts: (1) it constitutes the first effort made in the field to comprehensively elicit VET expert judgements in relation to XR technologies, and (2) it offers decision-making criteria that are at play in seeking to take advantage of high-cost technologies that are rapidly evolving. While there is no simple checklist for XR implementation, this study takes a step further to identify significant factors influencing XR integration in vocational construction training.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 4 October 2022

Ali Rashidi, Wei Yin Yong, Duncan Maxwell and Yihai Fang

The construction industry has actively attempted to tackle the low-productivity issues arising from inefficient construction planning. It is imperative to understand how…

Abstract

Purpose

The construction industry has actively attempted to tackle the low-productivity issues arising from inefficient construction planning. It is imperative to understand how construction practitioners perceive technology integration in construction planning in light of emerging technologies. This study intended to uncover unique experimental findings by integrating 4D-building information modelling (BIM) to virtual reality (VR) technology during construction planning among construction professionals at light steel framing (LSF) projects.

Design/methodology/approach

The building industry participants were invited to provide inputs on two different construction planning methods: conventional and innovative methods. The conventional method involved the participants using traditional platforms such as 2D computer-aided design (CAD) and physical visualisation of paper-based construction drawings for the LSF assembly process with a Gantt Chart tool to complete construction planning-related tasks for the targeted project. Comparatively, participants are required to perform the same tasks using more innovative platforms like 4D-BIM in a VR environment.

Findings

A Charrette Test Method was used to validate the findings, highlighting an improvement in usability (+10.3%), accuracy (+89.1%) and speed (+30%) using 4D BIM with VR compared to the conventional paper-based method. The findings are also validated by a paired t-test, which is supported by the rationality of the same findings. This study posits positive results for construction planning through the utilisation of modern practices and technologies. These findings are significant for the global construction industry facing low productivity issues, delays and certainty in terms of building delivery timelines due to poor construction planning.

Originality/value

This new blend of technologies—combining 4D BIM and VR in industrialised construction projects—potentially directs future initiatives to drive the efficiency of construction planning in the building lifecycle. The interactive BIM-based virtual environment would purposefully transform construction planning practices in order to deliver modern and more certain building construction methods with a focus on prefabrication processes.

Article
Publication date: 28 October 2020

Fernanda Rodrigues, Flávio Antunes and Raquel Matos

The use of building information modelling (BIM) methodology has been increasing in the architecture, engineering, construction and operation sector, driven to a new paradigm of…

Abstract

Purpose

The use of building information modelling (BIM) methodology has been increasing in the architecture, engineering, construction and operation sector, driven to a new paradigm of work with the use of three-dimensional (3D) parametric models. However, building information modelling (BIM) has been mostly used for as-built models of a building, not yet been widely used by designers during project and construction phases for occupational risks prevention and safety planning. This paper aims to show the capacity of developing tools that allow adding functionalities to Revit software to improve safety procedures and reduce the time spent on modelling them during the design phase.

Design/methodology/approach

To reach this objective, a structural 3D model of a building is used to validate the developed tools. A plugin prototype based on legal regulations was developed, allowing qualitative safety assessment through the application of job hazard analysis (JHA), SafeObject and checklists. These tools allow the automated detection of falls from height situations and the automated placement of the correspondent safety systems.

Findings

Revit application programming interface allowed the conception and addition of several functionalities that can be used in BIM methodology, and more specifically in the prevention of occupational risks in construction, contributing this paper to the application of a new approach to the prevention through design.

Originality/value

This paper is innovative and important because the developed plugins allowed: automated detection of potential falls from heights in the design stage; automated introduction of safety objects from a BIM Safety Objects Library; and the intercommunication between a BIM model and a safety database, bringing JHA integration directly on the project. The prototype of this work was validated for fall from height hazards but can be extended to other potentials hazards since the initial design stage.

1 – 4 of 4